Novel De Novo Mutation in Sulfonylurea Receptor 1 Presenting as Hyperinsulinism in Infancy Followed by Overt Diabetes in Early Adolescence
نویسندگان
چکیده
OBJECTIVE Congenital hyperinsulinism, usually associated with severe neonatal hypoglycemia, may progress to diabetes, typically during the 4th decade of life in nonpancreatectomized patients. We aimed to genotype the ATP-sensitive K(+) channel in a 10.5-year-old girl presenting with overt diabetes following hyperinsulinism in infancy. RESEARCH DESIGN AND METHODS A female aged 10.5 years presented with new-onset, antibody-negative diabetes (A1C 10.6%). She was born large for gestational age (5 kg) to a nondiabetic mother and developed frequent hypoglycemic episodes, which persisted until age 3 years and responded initially to intravenous glucose and later to oral sweets. Currently, she is fully pubertal and obese (BMI 30.2 kg/m(2)), with a partially controlled convulsive disorder (since age 1 year) and poor school performance. Glucose levels were >11.1 mmol/l throughout 72 h of continuous glucose monitoring, with low insulin secretion during intravenous glucose tolerance testing. KCNJ11 and ABCC8 mutation analysis was performed, and the mutation identified was characterized in COSm6 cells. RESULTS A novel, de novo heterozygous ABCC8 sulfonylurea receptor (SUR)1 mutation (R370S) was identified in the patient's DNA but not in that of either parent. Cotransfection of Kir6.2 and mutant SUR1 demonstrate that the mutated protein is expressed efficiently at the cell surface but fails to respond to MgADP, resulting in minimal channel activity. Interestingly, the heterozygous channel (WT:R370S) responded well to glibenclamide, a finding that lead to the successful initiation of sulfonylurea therapy. CONCLUSIONS This new ABCC8 mutation is associated with neonatal hyperinsulinism progressing within 10 years to insulinopenic diabetes. Consistent with in vitro findings, the patient responded to sulfonylurea treatment. The mechanism causing the relatively rapid loss in beta-cell function is not clear, but it may involve mutation-induced increased beta-cell apoptosis related to increased metabolic demand.
منابع مشابه
Transient neonatal diabetes mellitus caused by a de novo ABCC8 gene mutation
Transient neonatal diabetes mellitus (TNDM) is a rare form of diabetes mellitus that presents within the first 6 months of life with remission in infancy or early childhood. TNDM is mainly caused by anomalies in the imprinted region on chromosome 6q24; however, recently, mutations in the ABCC8 gene, which encodes sulfonylurea receptor 1 (SUR1), have also been implicated in TNDM. Herein, we pres...
متن کاملDiazoxide-Unresponsive Congenital Hyperinsulinism in Children With Dominant Mutations of the β-Cell Sulfonylurea Receptor SUR1
OBJECTIVE Congenital hyperinsulinemic hypoglycemia is a group of genetic disorders of insulin secretion most commonly associated with inactivating mutations of the β-cell ATP-sensitive K(+) channel (K(ATP) channel) genes ABCC8 (SUR1) and KCNJ11 (Kir6.2). Recessive mutations of these genes cause hyperinsulinism that is unresponsive to treatment with diazoxide, a channel agonist. Dominant K(ATP) ...
متن کاملNateglinide is Effective for Diabetes Mellitus with Reactive Hypoglycemia in a Child with a Compound Heterozygous ABCC8 Mutation
ABCC8 encodes the sulfonylurea receptor 1 (SUR1) subunits of the beta-cell ATP-sensitive potassium (K-ATP) channel playing a critical role in the regulation of insulin secretion, and inactivating mutations in ABCC8 cause congenital hyperinsulinism. Recently, ABCC8 inactivating mutations were reported to be involved in the development of diabetes mellitus later in life. We report a girl who was ...
متن کاملDominantly inherited hyperinsulinism caused by a mutation in the sulfonylurea receptor type 1.
ATP-sensitive potassium channels play a major role in linking metabolic signals to the exocytosis of insulin in the pancreatic beta cell. These channels consist of two types of protein subunit: the sulfonylurea receptor SUR1 and the inward rectifying potassium channel Kir6.2. Mutations in the genes encoding these proteins are the most common cause of congenital hyperinsulinism (CHI). Since 1973...
متن کاملOral Therapy in a Diabetic Patient With History of Infantile Hyperinsulinism
Hyperinsulinism is the most common cause of persistent hypoglycemia in early infancy (1). Loss of function mutation in HNF4A gene is an unusual cause of this disease (2). HNF4A protein is a homodimer nuclear transcription factor with 474 amino acids which plays a role in 22 identified pathways. Mutations in this gene cause deficiency in regulation of beta-cell development and nuclear receptors ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Diabetes
دوره 57 شماره
صفحات -
تاریخ انتشار 2008